
OEL
Talks

How to elevate your (OpenEuropa)
contribution with automated tests

OpenEuropa Library Talk #4 – Adam Nagy

2 July 2024

11th of June 2024

Agenda

1. Introduction: Who we are

2. Introduction: Our types of session

3. Introduction: Connect with us!

4. Upcoming events

5. What are automated tests (including examples)

6. Types of automated tests

7. What makes a good automated test

11th of June 2024

Introduction: Who we are

Montana Franco
Product Owner OEL and Drupal

Community of Practice Lead

Inés Mühlhofer
Drupal Community of

Practice Lead

Sabina La Felice
Governance Lead

Raquel Fiahlo
Innovation Lead

Francesco Sardara
Innovation Co-Lead

Monika Vladimirova
Events & Communication Lead

Joao Santos
DevSecOps & QA Lead

Daniel Moital
DevSecOps & QA Co-

Lead

Hernani Borges de

Freitas
Contribution Co-Lead

11th of June 2024

Introduction: Our types of sessions

OEL Talks

Weekly Tuesday meetings to stay

connected and informed in our Teams

channel!

• Engaging Sessions addressing

everyone

• Guest Speakers

• Trainings/Webinars

• Lightning Sessions

Ask OEL

Weekly Friday meetings to ask all

your questions on OEL in our Teams

channel!

• For developers or people with a

technical profile

• Q&A Meetings

• Tutorials & Demos

• Technical Guidance

https://teams.microsoft.com/l/channel/19%3A9b9dd970849e448fa391e2cce045dda8%40thread.tacv2/02.%20%F0%9F%91%A9%E2%80%8D%F0%9F%8F%AB%20OEL%20Talks?groupId=1ced2ee8-4349-4cbf-9cfe-9cb8117b6466&tenantId=b24c8b06-522c-46fe-9080-70926f8dddb1
https://teams.microsoft.com/l/channel/19%3Af487c63880104a108d2db4e376886969%40thread.tacv2/04.%20%F0%9F%92%AD%20Ask%20OEL%20Team!!?groupId=1ced2ee8-4349-4cbf-9cfe-9cb8117b6466&tenantId=b24c8b06-522c-46fe-9080-70926f8dddb1

Introduction: Connect with us!

LinkedInOur website On Teams Our FAQ on Wikis On drupal.org

Our contribution

guidelines

You can also reach us via EC-OPENEUROPALIBRARY@ec.europa.eu

https://www.linkedin.com/groups/13012491/
https://drupal-community-of-practice.ec.europa.eu/index_en
https://teams.microsoft.com/l/team/19%3A1C0Lh4K0KAu-Y6UkuCjkmP4krbuTXv85RPqpLG7WRjM1%40thread.tacv2/conversations?groupId=1ced2ee8-4349-4cbf-9cfe-9cb8117b6466&tenantId=b24c8b06-522c-46fe-9080-70926f8dddb1
https://webgate.ec.europa.eu/fpfis/wikis/pages/viewpage.action?spaceKey=openeukb&title=Drupal+CoP+@EC+and+EUIBAs
https://www.drupal.org/european-commission-and-european-union-institutions-agencies-and-bodies
https://webgate.ec.europa.eu/fpfis/wikis/display/openeukb/OEL+Contribution+Guidelines
https://webgate.ec.europa.eu/fpfis/wikis/display/openeukb/OEL+Contribution+Guidelines

Upcoming events:

16/07/2024: OEL Design System: Introduction of the OEL Desing System – Kalte Lopez Gomez

 09/07/2024: Introduction Drupal Starshot: Introduction to the possibilities of Drupal Starshot–

Cristina Chumillas

Summer break

https://www.linkedin.com/in/kalte-dunkelheit-22774852/
https://www.linkedin.com/in/cristinachumillas/

Overview

About me
• Joined in 2016
• Back-end developer
• EWPP Core team
• Drupal contributor
• Drummer

What participants will learn
• What are automated tests
• Why is it important
• Costs involved
• Types of automated tests
• Pros and cons
• Being productive with tests

Target audience

• Project managers

• Product owners

• Scrum masters

• Developers

11th of June 2024

What are automated tests?

Software testing technique that automates the process of validating the functionality of the

software and ensures it meets requirements before being released into production.

No test is inherently useful just because it exists.

A test becomes useful when it fulfils its purpose.

You write tests to validate the intention behind the system.

Automated tests are developer-oriented documentation of the system and its design.

11th of June 2024

Yes, but...

How can you know that ALL your code works if you don't test it

every time you make a change?

How can you test it every time you make a change if you

don't have automated tests with very high coverage?

Developers spend 620 million hours a year debugging

software failures, which cost companies $61 billion annually.

They spend an average of 13 hours to fix a single software

failure.

According to a study published by Cambridge MBA students in 2020.

(https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-

market-61b-annually-301066579.html)

11th of June 2024

Why? Because...

It proves that your code works, and you can be nearly certain it doesn't break anything.

Bug fix without a test is just a workaround.

Improves system reliability and overall quality.

Speeds up the implementation of new features, faster Time to Market (TTM).

More frequent releases results in high return of investment (ROI).

Lose all fear of making changes.

Keeps your production code flexible.

11th of June 2024

From https://www.karllhughes.com/posts/testing-matters

https://www.karllhughes.com/posts/testing-matters

11th of June 2024

Real life examples

Aggregator module - used by over 5000 sites

Release 2.1.0 - Update path overrode the homepage path, making aggregator views

as homepage. We detected early on thanks to over-night builds. It was fixed the

same day.

Entity Clone module - used by over 35,000 sites

2.0.0-beta5 released a major bug creating multiple orphaned entities and PHP fatal

errors. Quick response and bug report is essential for the community.

RoleAssign module - used by over 18,000 sites

Release 2.0.1: Undefined array index "base_form_id" errors.

11th of June 2024

Real life examples - on the positive side

MaxLength module

2.0.x - minimally tested, fixes and features came very slow.

2.1.x - broad testing was implemented, and support for both CKEditor 4-5 versions.

3.0.x - now the module is used by over 46,000 sites and the bug list minimal.

SpamSpan module

2.x - almost no tests and used by over 14,000 sites.

3.x - broad test coverage introduced, and 19 merge requests with tests were done within

weeks. By doing this, we identified critical bugs and made the module stable of the

community.

These are good examples on how to start testing at a later stage in a SDLFC.

Identify the most critical functionalities and start from there.

11th of June 2024

Types of automated tests

The two main testing types are:

• Functional automated testing – these tests verify whether an application’s features

match the expectations outlined in the requirements. An example of functional testing is

checking whether you can log in and log out.

• Non-functional testing – this focuses on testing all requirements aside from business

applications and spans accessibility, performance, security, and usability testing. An

example of a non-functional test is checking whether an application can handle high

traffic.

11th of June 2024

Types of automated tests

Performance tests – these verify the overall performance of a system by checking

response times and stability during the load.

Security tests – here, the application is checked for security issues and vulnerabilities that

could be exploited by an attacker, leading to data loss or leaks.

Accessibility tests – these verify if applications can be accessed by people with different

demands – including individuals with vision, hearing, or other impairments – and those

using aids like screen readers.

11th of June 2024

Types of automated tests

Usability tests – these focus on testing whether a system is easy to use and intuitive.

Usability tests are performed by real users or take place under conditions matching real

use; insights and feedback are collected.

UI tests – these focus on the graphical interface users interact with, including testing on

different device types and resolutions.

Smoke tests – here, it’s about checking critical functionalities and paths to make sure the

build is stable and further testing can take place.

Regression tests – these involve running functional and non-functional tests again,

ensuring no new issues were introduced.

11th of June 2024

Different testing levels

Static – linters, formatters, and type checkers are employed to catch typos and coding

standards.

Unit – focuses on testing the smallest isolated piece of code.

Integration – here, independent modules or components are tested together to make

sure they work as expected.

Functional – focuses on testing API communication, ensuring requests are properly

handled and responses meet expectations.

End-to-end – verifies multiple components at once by interacting with the GUI and

testing specified user stories.

11th of June 2024

Types of automated tests in Drupal

Most testing is done under the PHPUnit framework.

Unit - tests with minimal dependencies, bare PHP, it is very fast.

Example: spamspan – TwigExtensionUnitTest.php

Kernel - tests with a bootstrapped kernel, and a minimal number of extensions enabled.

Example: oe_content- TimelineFieldTest.php

Functional - tests with a fully booted Drupal instance. The installation takes time.

Example: oe_media - DocumentMediaTest.php

FunctionalJavascript - tests that use Webdriver to perform tests of Javascript and Ajax

functionality in the browser thanks to Mink framework with Selenium.

Example: oe_media - MediaCreationFormWidget.php

11th of June 2024

Types of automated tests in Drupal

End to End tests - BEHAT

Behat is an open-source PHP framework that is used to automate testing by leveraging

Behaviour Driven Development (BDD). A BDD is focusing on continuous communication

and simple text stories. With BDD, the tester builds test cases in human-readable

language. The language used by the Behat tool is Gherkin, which is a business readable

and domain-specific language.

Example: oe_media – image.feature

11th of June 2024

Types of automated tests in Drupal

End to End tests - Existing Site Test

Sometimes you need to test a whole installation profile with complex interdependencies,

and you need to have certain configurations in place or third-party libraries in place like on

a real site. Drupal Testing Traits allows writing tests for an already installed site. Same

as the functional tests in Drupal.

In EWPP we are using a combination of Existing Site tests with BEHAT.

Since BEHAT is not checked by business we stopped writing new ones.

In EWPP from 185 586 lines of code, 113 546 lines are only tests.

11th of June 2024

Common pitfalls

Test code is as important as the production code.

Unmaintainable tests will cripple the development cycle.

Separation of development and testing process is wrong.

Not prioritizing continuous integration.

Over-reliance on End-to-End testing.

11th of June 2024

What makes a good test?

Three things:

1. Readability

2. Readability

3. Readability

Perhaps it is even more important in tests than in production code.

Say a lot in a few expressions.

QA should find nothing!

11th of June 2024

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

